130 research outputs found

    Approximate Circuits in Low-Power Image and Video Processing: The Approximate Median Filter

    Get PDF
    Low power image and video processing circuits are crucial in many applications of computer vision. Traditional techniques used to reduce power consumption in these applications have recently been accompanied by circuit approximation methods which exploit the fact that these applications are highly error resilient and, hence, the quality of image processing can be traded for power consumption. On the basis of a literature survey, we identified the components whose implementations are the most frequently approximated and the methods used for obtaining these approximations. One of the components is the median image filter. We propose, evaluate and compare two approximation strategies based on Cartesian genetic programming applied to approximate various common implementations of the median filter. For filters developed using these approximation strategies, trade-offs between the quality of filtering and power consumption are investigated. Under conditions of our experiments we conclude that better trade-offs are achieved when the image filter is evolved from scratch rather than a conventional filter is approximated

    Design, Verification, Test and In-Field Implications of Approximate Computing Systems

    Get PDF
    Today, the concept of approximation in computing is becoming more and more a “hot topic” to investigate how computing systems can be more energy efficient, faster, and less complex. Intuitively, instead of performing exact computations and, consequently, requiring a high amount of resources, Approximate Computing aims at selectively relaxing the specifications, trading accuracy off for efficiency. While Approximate Computing gives several promises when looking at systems’ performance, energy efficiency and complexity, it poses significant challenges regarding the design, the verification, the test and the in-field reliability of Approximate Computing systems. This tutorial paper covers these aspects leveraging the experience of the authors in the field to present state-of-the-art solutions to apply during the different development phases of an Approximate Computing system

    Information of the Ropice Horizon in the territory of the Czech Republic (Late Jurassic, Silesian Unit of Outer Western Carpathians)

    No full text

    Western Carpathians in the territory of the Czech Republic

    No full text

    Dolomitization in diagenetic history of the Stramberk limestones

    No full text

    Main paleogeographical elements of the West Outer Carpathians during Late Jurassic and Early Cretaceous times

    No full text
    Praca koncentruje się na elementach ważnych dla zrozumienia paleogeografii Zachodnich Karpat zewnętrznych w późnej jurze i wczesnej kredzie w nawiązaniu do litostratygrafii różnych stref facjalnych i opracowania skał macierzystych tworzących się w tym okresie. Opisano szereg elementów paleograficznych: Tetyda alpejska i basen magurski, grzbiet ślaski, basen seweryńsko-mołdawidzki oraz platforma północnoeuropejska. W obrębie tej platformy wyróżniono strefy wyniesione: grzbiet Baska-Inwałd oraz pawłowska platforma węglanowa, a także strefy basenowe: basen bachowicki i basen mikułowski.The present paper concentrates on the elements important to understanding the paleogeography of the West Carpathians during Late Jurassic and Early Cretaceous times. These elements are linked to the lithostratigraphy of the various facies zones as well as occurrence of hydrocarbon source rocks. Several paleogeographic elements have been described: the Alpine Tethys, Magura Basin, Silesian Ridge, Severin-Moldavidic Basin and North European Platform. The uplifted and basinal zones were distinguished within the platform. The Baska-Inwałd Ridge and Pavlov Carbonate Platform belong to the uplifted elements, while Bachowice and Mikulov basins represent the basinal zones
    corecore